
RISC-V SOC HARDWARE

VULNERABILITY DETECTION TOOLSET
TEAM 41

MASON KORKOWSKI, MICAH MUNDY, GERALD EDEH, KOLTON KELLER, EVA KOHL, SAVVA ZEGLIN, MAGNUS ANDERSON

CLIENT/ADVISOR: HENRY DUWE

Problem
• System on Chip (SoC) designs are 

becoming more and more prevalent.

• More advanced SoCs → higher 

complexity → more vulnerabilities

• The problem of detecting 

these vulnerabilities is especially
challenging. 

• Project goal: Construct a toolset that 

can be used for hardware capture-

the-flag competitions such as 

HACK@DAC

Testing
•Unit Testing:

•Junit was used on the 
Java programs

•Each program was 

tested on mock data 
and bug injection.

•System Testing:

•Address Overlap 

Detector: Verified 
through injected bugs.

•The Signals That Never 

Change Detector: 

Tested with a custom-

made bug injector. 

Over 60% of injections 
found successfully

Project Resources
• Google Drive Tools Suite

• Gitlab

• Software IDE(s)

• Questasim / other 

hardware simulation 

software

• Virtual machine for 

simulation, other tasks

• Personal computers for 

use of above tools and 

software

Address Overlap 

Detector
• Input:

• Peripheral File of SoC 

design

• Address Parser
• Bash Script

• Core address 

configuration files are 

evaluated and output to 
a file

• Overlap Detection

• Java program

• Analyzes output from 
Address Parser

• Detects any overlapping 
addresses

• Output:

• Information regarding 

address overlap findings

Concept Diagram Users and Uses
• Primary Users:

• HACK@DAC 
participants

• First line of attack

• Reduce time to 
detect/exploit bugs

• Secondary Users:

• Hardware Developers

• First line of defense

• Signal tracing and 
bug detection

Design 
Requirements

• Find hardware-induced 

vulnerabilities in the RTL 

implementations of 
SoC designs

• Accessible via 
command line

• Run on a virtual machine 

with access to 4 cores 
and 16GB RAM

• Follow all HACK@DAC 

rules and regulations

Signal Tracer
• Input:

• Directory of SoC RTL design, top level module name, signal to trace

• Verible

• External library which tokenizes Verilog Files

• Token Parser / Back Tracing / Dependency Tracker

• Java Program

• The tokens from Verible are parsed in order to locate the given signal

• Each signal/module the signal depends on is used to build a dependency 
hierarchy

• Output:

• Tree structure which describes every dependency of the signal

Final Product
Toolset consisting of:
Signal Tracer

• Quickly determine signal 

dependencies without 

manually searching files

Signals That Never Change 
Detector

• Easily detect unchanging 

signal bugs in SoC design

Address Overlap Detector

• Swiftly locate overlapping 
peripheral addresses

Signals That Never Change Detector
• Input:

• Directory of SoC RTL design, top level module name

• Unchanging Signal Detection

• Java Program

• Use Signal Tracer for each signal in the design

• Determines if signal's dependencies are such that it will never change

• Output:

• Information to user about signals whose value is unchanging

What is HACK@DAC?
• Hardware Capture the Flag 

Competition

• Teams compete to find flaws 

in a buggy SoC design

• Encourages creation of 

automated bug detection 
tools

• Promotes security in 
hardware


